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ABSTRACT: The objective of this research is to develop techniques for assimilating GOES-R series observations in

precipitating scenes for the purpose of improving short-term convective-scale forecasts of high-impact weather hazards.

Whereas one approach is radiance assimilation, the information content of GOES-R radiances from its Advanced Baseline

Imager saturates in precipitating scenes, and radiance assimilation does not make use of lightning observations from the

GOES LightningMapper. Here, a convolutional neural network (CNN) is developed to transformGOES-R radiances and

lightning into synthetic radar reflectivity fields to make use of existing radar assimilation techniques.We find that the ability

of CNNs to utilize spatial context is essential for this application and offers breakthrough improvement in skill compared to

traditional pixel-by-pixel based approaches. To understand the improved performance, we use a novel analysis method that

combines several techniques, each providing different insights into the network’s reasoning. Channel-withholding experi-

ments and spatial information–withholding experiments are used to show that the CNN achieves skill at high reflectivity

values from the information content in radiance gradients and the presence of lightning. The attribution method, layerwise

relevance propagation, demonstrates that the CNN uses radiance and lightning information synergistically, where lightning

helps theCNN focus onwhich neighboring locations aremost important. Synthetic inputs are used to quantify the sensitivity

to radiance gradients, showing that sharper gradients produce a stronger response in predicted reflectivity. Lightning ob-

servations are found to be uniquely valuable for their ability to pinpoint locations of strong radar echoes.

KEYWORDS: Radars/radar observations; Satellite observations; Data assimilation; Deep learning; Machine learning;

Neural networks

1. Introduction

Geostationary Operational Environmental Satellite (GOES)

imagery is a key element of U.S. operational weather fore-

casting, supporting the need for high-resolution, rapidly re-

freshing imagery for situational awareness (Line et al. 2016).

While used extensively by human forecasters, its usage in data

assimilation (DA) for numerical weather prediction (NWP)

models is limited. Instead DA makes greater usage of micro-

wave and infrared sounder data on low-Earth-orbiting satel-

lites (Lin et al. 2017). Sounders provide more vertically

resolved information than imagers, which is advantageous for

characterizing the three-dimensionalmodel state, but are carried

almost exclusively on low-Earth-orbiting satellites—providing

global coverage but at the expense of coarse temporal res-

olution and latency from sensor to NWP center that can

reach 1.5 h or more. Geostationary imagers provide much

faster temporal refresh [now 10min for full disk and 5min

over the contiguous United States (CONUS)] and very low

latency over a limited field of regard. Thus, there is an op-

portunity for operational DA to benefit from the high vol-

ume of low-latency, complementary data coming from the

global constellation of geostationary imagers.

Operational DA for convective-scale NWP has made steady

scientific advances (Gustafsson et al. 2018), but all-sky assim-

ilation of infrared radiances has yet to be operationally dem-

onstrated (Geer et al. 2018). This means that the most dynamic

areas from the standpoint of precipitation, having significant

impacts on human activities, are also the areas that have the

least amount of data to constrain estimates of the current at-

mospheric state. One approach is radiance assimilation (RA),

which has the advantage of being physically based, making it

simpler to interpret. Okamoto et al. (2019), Honda et al.

(2018a,b), and Sawada et al. (2019) tested assimilation of

Himawari-8 water vapor absorption bands, finding im-

provements for heavy rain cases. Otkin and Potthast (2019)

assimilate a water vapor band on SEVIRI, finding that the all-

sky radiance bias correction is critical to making a positive

impact on analyses. Demonstration of GOES-16 Advanced

Baseline Imager (ABI) RAwas provided byZhang et al. (2018,

2019), and Jones et al. (2020). These studies make different

assumptions about how to inflate observation and background

errors and how to weight information in the vertical. Errors in

model microphysics and radiative transfer will be inherited by

RA, and the land surface will come into play for window

channels. Jones et al. (2020) find improved convective initia-

tion forecasts with all-sky RA, but their best results come from

using clear-sky radiances and cloud property retrievals. RA

cannot be used for assimilating lightning observations, so an

observation operator is required to convert observables into

control variable increments. Kong et al. (2020) demonstrate

improvements from assimilating GOES Lightning Mapper
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(GLM), using an observation operator that takes advantage of

the strong physical relationship between lightning and graupel

mass and volume.

A limitation of infrared RA in cloudy and precipitating

pixels is saturation of information content. ForGOESABI, the

information content of individual pixels saturates around op-

tical depths of 160 and 8 during day and night, respectively,

which are the maximum values reported by the retrieval al-

gorithm (Walther et al. 2013). For warm-season convection

over CONUS, we find that these values roughly correspond to

composite reflectivity (REFC; the vertical maximum radar

reflectivity in the column) of 20–25 dBZ for day and 0–5 dBZ

for night (Rutledge et al. 2020). This truncated sensitivity

means, in turn, that infraredRAholds only limited information

about precipitating scenes. This limitation is also present with

physically based cloud property retrievals (Jones et al. 2015).

The machine learning (ML) technique of convolutional neural

networks (CNNs) has the advantage of using the information

content present in image gradients, which we will show pro-

vides reliable information content up to REFC of about

50 dBZ. Moreover, ML provides an effective framework for

using lightning information together with radiance informa-

tion. So, in this work ML serves as an observation operator for

DA, but there are many potential applications of ML to DA,

for example, quality control, bias correction, observation

thinning, and postprocessing to name a few. This unique ability

of CNNs to capture spatial information—together with the

large quantity, high quality, high resolution, and low latency of

GOES-R data—is justification for exploring the capabilities of

ML to enhance DA. Moreover, human forecasters are bom-

barded with an increasing quantity of information and have

limited bandwidth, and exploration of ML methods can help

meteorologists to extract maximum value from the firehose of

GOES-R observations.

The objective of this research is to ingest GOES-R series

observations from the ABI (Schmit et al. 2017) and GLM

(Goodman et al. 2013) in precipitating scenes for the purpose

of improving short-term convective-scale forecasts of high-

impact weather hazards. The Rapid Refresh Forecast System

(RRFS) has long used radar reflectivity to estimate latent

heating in order to spin up convection in the models.

(Benjamin et al. 2016). Using this pathway for GOES infor-

mation would require producing 3D fields of radar reflectivity.

We will treat this problem as vertically separable, first esti-

mating the spatial distribution of REFC, and then estimating

the vertical profile in a second step. This paper will tackle the

REFC part of the problem, focus on convective-scale appli-

cations, and consider warm-season convection over eastern

CONUS where radar coverage is best. We describe the de-

velopment of a CNN for that purpose, including architecture

selection and a novel approach to design a loss function to deal

with class imbalances of REFC values. Performance is evalu-

ated using metrics including the mean-square error (MSE),

coefficient of determination R2, categorical metrics (proba-

bility of detection, false-alarm rate, critical success index, and

categorical bias) at various output threshold levels, and eval-

uation of the root-mean-square difference (RMSD) binned

over the range of true output values.

A potential disadvantage of ML is that it is statistically

based, making it harder to interpret. So, besides producing a

trained and evaluated model, part of the focus of this paper is

on developing tools for the interpretation and explanation of

the strategies for how CNNs make predictions. This paper is

concerned specifically with tools for the GOES-radar transla-

tion problem, but a more general review for image-to-image

translation problems is provided by Ebert-Uphoff and Hilburn

(2020). Using ML to transform satellite data inputs has the

potential to introduce errors arising from uncertainties related

to the connection between observed cloud-top features and

lightning with estimates of latent heating vertical profiles, so it

is very important that we understand how the ML makes its

predictions and to characterize the errors. McGovern et al.

(2019) provides a thorough review of many approaches for

understanding ML predictions. However, the focus of that

paper is on methods for analyzing networks for image classi-

fication tasks, that is, networks that take images as inputs and

produce one scalar value as the output. In this study, the net-

work is performing image-to-image translation, taking images

as inputs and producing images as outputs. This some tech-

niques in McGovern et al. (2019) are not directly applicable to

image-to-image translation problems, and we explored several

other methods. For interpreting image-to-image translation

CNNs, layerwise relevance propagation (LRP;Montavon et al.

2018; Lapuschkin et al. 2019) was found to provide very useful

information (section 3d). This paper uses a novel analysis

method combining LRP (section 3d) together with target

architecture experiments (section 3b) and synthetic inputs

(section 3e) to gain insights on strategies learned by the ML

model that produce good skill.

TheMLmodel developed in this paper is envisioned for DA

applications, but there are other related research efforts with

aviation and nowcasting applications. Veillette et al. (2018)

derived a CNN to predict radar vertically integrated liquid

(VIL) from satellite data for aviation applications. This is a

similar problem to the one tackled by this paper; however, they

use a somewhat unconventional architecture where features

are extracted from each input variable separately and then

combined in fusion layers. An interesting question about that

architecture is whether it allows the network to learn to use

lightning data to focus its attention on specific IR features as in

this work (section 3d). Another major difference with Veillette

et al. (2018) is in how they handle the class imbalance issue.

Herein, we use a weighted loss function approach, while

Veillette et al. (2018) deliberately sample data to create a

balanced training dataset with roughly equal portions of zero,

low, and high-intensity VIL. Ayzel et al. (2020), Agrawal et al.

(2019), and Samsi et al. (2019) trained CNNs with a similar

U-Net architecture as in this paper for the problem of now-

casting using radar data. Su et al. (2020) approached the

nowcasting problem using a recurrent architecture, which

should better capture temporally evolving features than a

standard feedforward architecture. There are a number of

commercial entities seeking to provide proxy global radar da-

tasets. The Earth Networks company has developed PulseRad,

which uses their ground-based lightning detection network to

create global proxy radar maps. The ClimaCell company has
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merged data from several low-Earth-orbiting and geosta-

tionary satellites to create a global precipitation layer product.

The interpretation methods developed in this paper could be

applied to other CNNmodels for global radar or nowcasting to

potentially improve upon the models and make them more

explainable.

We will begin with short descriptions of the ‘‘source’’ ob-

servations from the GOES-R ABI (section 2a) and GLM

(section 2b), followed by our ‘‘target’’ observations from the

Multi-Radar Multi-Sensor (MRMS; section 2c). The approach

for constructing the ML training and validation datasets is

described in section 2d. The CNN architecture is described in

section 2e, and the approach for constructing a weighted loss

function is given in section 2f. The resulting CNN prototype

has been dubbed GOES Radar Estimation via Machine

Learning to Inform NWP (GREMLIN). In section 3a, we be-

gin with an overall characterization of the performance of

GREMLIN, finding remarkably good performance, even at

higher REFC values. To explain how GREMLIN makes such

predictions, in section 3b we selectively disable specific abilities

of this model, resulting in a progression of simpler models, and

analyze their results. By examining the predictions from vari-

ous models (withholding certain channels and/or withholding

spatial information), many insights can be gleaned. To ex-

amine the use of spatial information, we discuss and visu-

alize the effective receptive field of GREMLIN (section 3c).

To understand how the network is making its predictions,

and in particular how it uses radiance information and

lightning together, we apply the LRP attribution method

(section 3d). Then, we construct synthetic inputs repre-

senting different meteorological scenarios to probe the

network’s response and gain further insights into the use of

spatial information by the network and to characterize its

sensitivity (section 3e). Section 4 presents a summary and

future work.

2. Data and method

a. ABI

This study is making use of level-L1b radiances from the

GOES-RABI (Schmit et al. 2017) onGOES-16. We are taking

advantage of the higher spatial resolution (2 km) and faster

temporal refresh (5min over CONUS) relative to the previous

generation of GOES imagers. To produce a unified day–night

algorithm, we are focusing on just infrared channels, and, for

maximum portability and compatibility to legacy observing

systems, we are using the ‘‘heritage’’ channels:

d channel 7 (3.9-mm, shortwave infrared window),
d channel 9 [6.9-mm, midlevel water vapor (;442 hPa)], and
d channel 13 (10.3-mm, clean longwave infrared window).

The conversion and calibration of observed radiances Rad

to brightness temperatures TB for GOES ABI follows Schmit

et al. (2010):

T
B
5

c
2
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1

Rad
1 1
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2
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where c1 and c2 are the wavenumber-dependent coefficients

used to compute the monochromatic TB, and b1 and b2 are

spectral bandpass correction offset and scale for calculating the

calibrated brightness temperature TB,C. These coefficients are

provided in the GOES L1b NetCDF data files. We note that,

during the daytime, use of the optical depth information from

the red band (ABI band 2; 0.64mm) reflectance and the cloud

particle size and phase information from ABI band 6 (near

infrared; 2.2mm) reflectance provide additional skill; however,

use of these bands is beyond the scope of this paper.

Two angular quantities are especially relevant to the inter-

pretation of ABI imagery: satellite viewing zenith angle and

solar zenith angle. This studymakes use ofGOES-16 data from

2019, positioned in its operational east position (75.28W). In

this slot, the satellite viewing zenith angle increases from 358 in
northern Florida to 608 in North Dakota. Since we are focusing

over just CONUS, we can ignore viewing zenith angle depen-

dence because the limb cooling effect (Elmer et al. 2016) is

small in the atmospheric window bands we are considering.We

will also consider an example of storms over Colorado in 2017

when GOES-16 was in its initial check-out position (89.58W),

which had satellite viewing zenith angles around 458, as com-

pared with 508 in the operational East position. ABI band 7

(3.9mm) has a daytime solar reflective component and we

tested adding solar zenith angle as an input, but found it only

made small improvements, so we left it out of the version 1

GREMLIN model. In section 3a we consider the skill of the

model as a function of the solar zenith angle, which was cal-

culated following NOAA NESDIS (1998).

In a traditional pixel-based retrieval, correcting the effect of

parallax [Vicente et al. (2002) and appendix A in Miller et al.

(2018)] is essential for matching up satellite data with radar

data on these scales. The main uncertainty with parallax cor-

rection is estimating the height of the cloud. One can assume a

fixed height, such as 10 km, to substantially reduce the error, at

least for the deep clouds that are most relevant; or one can

use a cloud-top height product, but this can introduce blank

spots in the parallax corrected imagery when low and high

clouds are next to each other. To remove parallax offsets to

first order, we assumed a height of 10 km. Besides residual

parallax errors, there are other reasons for spatial displace-

ments, namely, vertical wind shear, and the CNN seems to

learn to apply additional spatial displacements on its own

based on what it sees in the training data.

b. GLM

The other major advancement provided by the GOES-R

series is real-time lightning observation from the GLM

(Goodman et al. 2010, 2013). Lightning is incredibly useful in

constructing synthetic radar fields because of its association

with the locations of strong updrafts within an embedded

convective complex. The physical basis for this association is

the strong spatial relationship between lightning flash rates,

updraft vertical velocity W, and latent heat release. If the ter-

minal velocity of a raindrop goes as the square root of the
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diameter, then it can be shown that mass (and latent heating)

goes as W6 and (linear) radar reflectivity factor goes as W12.

Meanwhile, using simple electrostatic arguments (Price and

Rind 1992, Boccippio 2002), one can derive that lightning flash

rate goes as W5 for continental thunderstorms.

Much of the research on using GLM for severe weather has

focused on the temporal variability, in particular lightning

jumps (Schultz et al. 2009, 2015). However, temporal vari-

ability of optically sensed lightning can provide misleading

signals. This seems to be due to time-varying detection effi-

ciency effects related to the production of cloud ice (Rutledge

et al. 2020), and also possibly to the unsteady nature of up-

drafts. Instead spatial variability contains more reliable infor-

mation content, supplementing missing information at very

high optical depths, and is especially useful at night. While

there is spatial variability in GLM detection efficiency

(Marchand et al. 2019), our CNN is more sensitive to the

presence of lightning rather than the magnitude of lightning

activity, which makes it less sensitive to GLM detection

efficiency issues.

GLMmaps total lightning with a spatial resolution of 8 km at

nadir to 14 km at the limb. The basic unit of data, called an

‘‘event,’’ is a gridded quantity, integrating all lightning pulses

within the grid box over a 2-ms time window. The Lightning

Cluster and Filter Algorithm (LCFA) combines adjacent

lightning pixels into ‘‘groups,’’ which are then clustered into

‘‘flashes’’ using a 330-ms temporal window and a 16.5-km

spatial window. Thus, groups and flashes are represented as

point observations consisting of a latitude, longitude, time, and

area. The LCFA also performs filtering to reduce false alarms.

Examination of a few sample storms found the best results (in

terms of correlation with REFC) occur when using GLM

groups, because they provide more ‘‘filled in’’ maps than using

flashes. For this work we create group-extent density maps

using the group area, assuming it is circular, and accumulating

data over 15-min intervals. We tested 5-min accumulation

periods but found that this finer temporal granularity produced

stratiform areas that flicker on and off from frame to frame.

The lighting data units are given as groups per 5min per kilo-

meter squared.

c. MRMS dataset

The target dataset to which we are training is the quality-

controlled composite reflectivity from the MRMS product

(Smith et al. 2016). The vertical coverage of MRMS as a

function of location is given in Fig. 1, which was created using

the 3D reflectivity MRMS fields. Our region of interest for this

study is CONUS, east of the Rocky Mountains, over which

radar beam blockage issues are minimal. As the radar beam

propagates away from the transmitter it is progressively higher

above Earth’s surface due to both the curvature of Earth and

the nonzero elevation angle of the beam itself [minimumof 0.58
for the operational Next-Generation Radar (NEXRAD)]. A

comparison of REFC for Hurricane Dorian off the Florida

coast with GOES observations indicated that when the vertical

coverage falls below 70%, implying that only echoes above

3 km can be measured, the estimate of REFC becomes ques-

tionable. When only 50% of the vertical levels are present, this

implies that only echoes above 6 km can be measured, and it

appears that REFC provides very little reliable information.

Over the Great Plains, where dewpoint depressions are large

and cloud bases are higher than in the tropical environments of

hurricanes, the reliability of REFC might fall off with distance

more slowly. To use the best-quality radar data, we are re-

stricting our domain of interest to east of 1058W, for which

nearly all locations have 70% coverage and most areas (by

virtue of their population) have 90% coverage, or a minimum

height of 1.25 km.

d. Dataset construction

The first step in constructing a dataset for training ML is to

resample all the inputs and outputs to a common grid. Since the

goal of this work is to use the results for data assimilation, we

have chosen the 3-km HRRR mass grid as the target grid. The

FIG. 1. MRMS radar coverage in terms of the percent of MRMS levels available at each location and the minimum

height at that location; 1058W is indicated by the dashed black line.
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projection and grid parameters are provided in Table 1, the

formulas used for constructing the Lambert conformal conic

and cylindrical grids are given by Snyder (1987), and the for-

mulas for the geostationary projection are provided by Harris

Corporation (2016). The MRMS grid is nominally 0.018 or

roughly 1 km, and theGOES grid for the infrared bands used in

this study is 2 km, so resampling to 3 km hasminimal distortion.

GOES and MRMS pixels were averaged into their corre-

sponding HRRR grid cell. We note that, because of averaging,

after resampling MRMS to 3-km REFC the occurrence of

values above 60 dBZ is very rare. The second step in preparing

the data for training a CNN is to scale the inputs and outputs to

the range 0–1. The scaling parameters for each variable are

given in Table 2 and were based on histograms of the variables.

We found that the training results were not very sensitive to the

exact values of the scaling parameters; however, the channel

importance coming from LRP (section 3d) was sensitive.

To reduce data volume and have the CNN focus on scenes of

interest, Storm Prediction Center (SPC) filtered storm reports

are used to automatically define regions and times of interest in

order to maximize the number of storm reports (tornado, hail,

and wind). We selected samples from the 92-day period from

17 April 2019 to 17 July 2019 during which there was abundant

severe weather. The samples consisted of 256 3 256-pixel im-

ages on 3-km HRRR grid (7683 768 km) and 6-h periods with

15-min refresh. A histogram of the number of storm reports per

day has a mode between 20 and 50 reports per case. Each case

represents a 6-h period on each day, which may span

0000 UTC. Figure 2a shows that this construction approach

results in a geographic preference for the upland South and

southern Great Plains. Figure 2b shows a temporal preference

for mid- to late-afternoon into the early evening. We split the

data using a chronological 80%–20% split for training–

validation. Based on this split, the July cases were used for

validation and April–June was used for training. We have a

total of 1798 samples for training and 448 samples for valida-

tion. In this paper we are restricting the focus to warm-season

convection to benchmark ML performance for this particular

phenomenon and identify the strategies learned by ML.

Testing on wintertime precipitation, it is clear that extending

the model to synoptic-scale systems will require a deeper

model with a larger receptive field (section 3c). Future work

training on a larger dataset will use the results of this paper to

ensure that the model can be extended without losing perfor-

mance for warm-season convection.

e. Selection of CNN architecture

This particular ML problem takes images as inputs and

returns images as outputs, making this an image-to-image

translation problem. The U-Net architecture is ideally suited

(Ronneberger et al. 2015) to this problem type, and Fig. 3

shows the model architecture we used. The model is drawn

with optional skip connections, which concatenate information

from the encoder side to reduce the loss of high-resolution

spatial information. However, for the results wewill present we

turned those connections off because they only provided small

improvements and complicate the visualization (section 3d).

For this particular application, the GOES data provide mostly

cloud-top information, while the radar provides information

from deeper inside the cloud, thus the high-resolution spatial

information that skip connections provide is not necessarily

helpful.

The CNN depicted in Fig. 3 has three encoding and three

decoding blocks. The encoding portion maps the inputs

TABLE 1. Projection and grid parameters for each dataset.

GOES MRMS HRRR

Parameter Value Parameter Value Parameter Value

Projection Geostationary Projection Cylindrical Projection Lambert conformal conic

Alt 35 786 023.0m Lower-left lon 21308E Reference lon 262.58E
Equatorial radius 6 378 137.0m Lower-left lat 208N Reference lat 38.58N
Polar radius 6 356 752.314 14m Lon scale 0.01 Std parallel 38.58N
Center lon 275.08E Lon dimension 7000 X scale 3.0 km

X scale 5.6 3 1025 Lat scale 0.01 X dimension 1799

X offset 20.101 332 Lat dimension 3500 Y scale 3.0 km

X dimension 2500 Y dimension 1059

Y scale 25.6 3 1025 Earth radius 6370 km

Y offset 0.128 212

Y dimension 1500

TABLE 2. Scaling parameters for each variable. Each scaling is linear, and inverted scaling maps maximum values to 0 and minimum

values to 1.

Channel Min Max Inverted

C07 200K 300K True

C09 200K 250K True

C13 200K 300K True

GLM 0.1 groups (5min)21 km22 50 groups (5min)21 km22 False

MRMS 0 dBZ 60 dBZ False
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(images) to a feature space, and the decoder maps the repre-

sentation in feature space back into images. Each of the three

encoding blocks consists of a convolution layer followed by a

pooling layer. A pooling layer reduces resolution and allows

the subsequent layers to detect patterns of larger spatial extent.

Each decoder block consists of a convolution layer followed by

an upsampling layer. Upsampling layers can be thought of as

the (imperfect) inverse of a pooling layer, namely, increasing

resolution and using interpolation to generate an approxima-

tion. The convolutional filters are 3 3 3 kernels that the net-

work learns during training. While U-Nets often double the

number of filters per convolution layer going down the en-

coding branch, and likewise halve the filters going up the

decoding branch, we found this produced very small im-

provements. Instead, we used a constant number of filters,

namely, 32 filters per convolution layer. Using more than 32

FIG. 2. (a) Spatial and (b) temporal distribution of samples.

FIG. 3. U-Net architecture for a model with 47 457 trainable parameters. The images are 256 3 256 pixels with

four input channels (ABI C07, C09, C13, and GLM group extent density) and one output channel (MRMS com-

posite reflectivity). The convolutional layers (blue and green arrows) each have 32 filters of size 3 3 3 and use a

rectified linear unit activation function. The final convolutional layer (gray arrow) combines results from all filters

into one output channel using one 1 3 1 filter and linear activation. The encoding branch (left side) uses 2 3 2

maximum pooling to reduce the image dimensions, and the decoding branch (right side) uses 23 2 upsampling to

increase the image dimensions. The skip connections (dashed black arrows), which concatenate channels across the

network, are turned off.
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filters per layer was unnecessary and leaves many filters in-

activated. Using fewer filters per layer, such as 16, gave similar

overall statistics as 32, but the outputs were noticeably blurrier.

The final layer of the network is a convolutional layer that

does a pixelwise (1 3 1 filter) linear combination of the 32

filters into one output field. We note that the combination we

use of an upsampling layer with nearest-neighbor interpolation

followed by a 13 1 convolution produces identical pixel values

in 2 3 2 blocks in the output field. As a small future im-

provement, we will include additional 3 3 3 convolutional

layers to obtain an interpolated result within the 2 3 2 blocks.

As noted above, there are three encoder and three corre-

sponding decoder layers. Based on an analysis of training and

validation losses, we found that going deeper resulted in

overfitting. Note, also, our choice of using only one convolution

layer per encoder/decoder block, while U-Nets often use two

convolution layers per block. Using two convolution layers per

block doubles the number of trainable parameters, alsomaking

the chance of overfitting more likely. We are concerned with

warm-season convection, a phenomenon that is inherently

small scale (e.g., mesog to the smaller end of mesoa), and a

network of this depth and architecture performs well.

However, for larger spatial phenomena, such as hurricanes and

synoptic-scale frontal precipitation, a deeper network will be

required. In such cases, more samples would be needed for

training. When additional real samples are unavailable, data

augmentation is the next best approach. As a side note, we

found that we could obtain results that were similar to those

shown in this paper with a training dataset of 1/10 original

sample by doing 103 augmentation, done by adding random

noise to the real samples. However, the results shown herein

used no data augmentation.

The model was trained on a single NVIDIA Tesla P100

GPU for 100 epochs, which took 15min of wall-clock time.

Using a batch size of 18, the model had a memory footprint of

0.5 gigabytes, and the data required 8 gigabytes of memory.

The final model stored in HDF5 is only 625 kilobytes. The

training history is shown in Fig. 4. Training beyond 100 epochs

we observed the validation loss flattened while the training loss

continued decreasing, indicating that further training would

produce overfitting. The loss function is described in section 2f.

The final version-1 GREMLIN model has validation statistics

against MRMS observations of RMSD 5 5.53 dBZ and

R2 5 0.740.

f. Design of loss function to address REFC class imbalance

In ML, the loss (or cost) function quantifies the difference

between the model predicted values and the actual true value.

The process of training a model involves changing the neural

network’s (NN’s) weights to minimize the loss function. An

important consideration in training the NN is the choice of loss

function since radar reflectivity fields suffer from a class im-

balance issue with an exponentially decreasing distribution for

high values. In this section we discuss a newway to design a loss

function to balance good performance for the rare (but im-

portant) high values with good performance for small values.

Training the NN using the standard unweighted pixelwise

MSE loss function results in suboptimal performance at high

REFC (Fig. 5). High radar reflectivity values are relatively less

common: if y represents the scaled radar reflectivity (scaling 0–

60 dBZ linearly into the range 0–1), then the probability den-

sity function is closely approximated by P(y) } e25y with an

R25 0.80. We use a performance diagram (Fig. 5) to select loss

function weights that produce the minimum categorical bias.

Categorical statistics and contingency tables are discussed in

Wilks (2006) and performance diagrams are discussed in

Roebber (2009). The binary categories are created by evalu-

ating whether the true and predicted REFC are greater than a

FIG. 4. Training history for GREMLIN in terms of the RMSD

with MRMS.

FIG. 5. Performance diagram for REFC categories 5, 10, . . . ,

50 dBZ. Dashed black contours are critical success index, and gray

dotted lines are categorical bias. The solid black line is perfor-

mance using an unweighted MSE loss function, the solid blue

line uses a 1/PDF weighted MSE loss function, and the solid red

line uses weights that produce the minimum categorical bias

(GREMLIN).
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threshold. While minimizing the categorical bias does not

guarantee that the results will also have maximal critical suc-

cess index, we found that in practice this was the case.

Our approach is related to using an area under the receiver

operating characteristic curve as a loss function but avoids the

problem of derivatives not existing for a discontinuous func-

tion. The approach also acts as a global constraint on the re-

alism of the resulting fields by balancing overprediction and

underprediction of reflectivity at all values. We define weights

W for the MSE loss function L according to a generalized

exponential:

L(y
true

, y
pred

)5
1

N
�
N

j51

W(y
true

)(y
pred

2 y
true

)
2

and (2a)

W(y
true

)5 eby
c
true , (2b)

where ytrue and ypred are the true and predicted values of y and

N is the number of training samples. We then vary b and c in a

grid search, training a NN model for each combination, to find

the optimal model producing the minimum categorical bias.

Values of the categorical bias are calculated at each REFC

threshold i from 5 to 50 dBZ in steps of 5 dBZ, and the best-

matching model is found by taking the parameter combination

k with

min
k

�
mean

i
(j12 bias

i,k
j)
�
. (3)

To get reliable results, we also train several versions of the

model (20 versions) that differ only in their random seeds and

then select the model minimizing Eq. (3). During training we

observed that errors for low REFC values settled down first, as

evidenced by a categorical bias near 1, and that errors for high

REFC values settled down last. We used only the training

samples to perform model selection, to keep the validation

samples independent.While the intuitive 1/PDFweights would

giveb5 5 and c5 1, we found that theminimum categorical bias

weights were b5 5 and c5 4 for theMSE loss and b5 5 and c5
3 for the mean-absolute-error (MAE) loss. The disparity sug-

gests there might be a way to choose coefficients from first

principles based on the PDF, but we note that the best results

require a much heavier weighting of the high values than would

be implied by direct usage of the inverse of the PDF.

3. Results and discussion

a. Baseline network performance

The overall performance of our final neural network,

GREMLIN, is shown as the red line in Fig. 5. To understand

the abilities of GREMLIN to produce synthetic radar re-

flectivity, it is helpful to consider a specific example. Figure 6

compares MRMSREFC (Figs. 6a,c,e) with GREMLIN REFC

(Figs. 6b,d,f) at three times during the event (2100, 2300, 0100

LT), noting that the first large hail reports were at 2050 LT and

lasted until 2130 LT. This case is notable because of its severe

impact on theDenver, Colorado, metropolitan area; the storms

produced up to baseball-sized hail [2.75 in. (;7 cm)] and was

the costliest weather catastrophe in Colorado—producing $1.4

billion in insured losses (Svaldi 2017). In addition to its human

impact, this case poses challenges for both infrared imagers and

optically sensed lightning. It is an example of Great Plains

thunderstorms with abundant cloud water concentrations (e.g.,

Williams et al. 2005) that produce large anvils that obscure the

convective cores in infrared imagery. While these conditions

also lead to very high lightning rates, Rutledge et al. (2020)

show these conditions also produce storms for which the

lighting flash height is relatively low, making for large optical

paths between the lightning source and the upper cloud

boundary along the GLM sensor line of sight (both in gen-

eral and for this particular case). This regionally common

‘‘inverted’’ charge structure causes a relative minimum in

lightning detection efficiency over the Great Plains (Marchand

et al. 2019; Fuchs et al. 2018).

Despite the challenges, Fig. 6 shows that GREMLIN per-

forms well for this case. In the early stages (Figs. 6a,b)

GREMLIN captures the three distinct convective cores near

Denver, Greeley, and Fort Morgan, Colorado. It correctly

represented the location of the strongest echoes, although it

also tended to overestimate them, and the finescale structure of

the cores is not captured. Two hours later (Figs. 6c,d) as the

storms began to transition to a convective line morphology,

the GREMLIN estimates captured that transition well.

GREMLIN properly located the strong echoes, although small

areas that were distinct in MRMS tended to get merged in

GREMLIN. After dark (Figs. 6e,f) and as the convection

transitioned from distinct cells to lines, GREMLIN captured

the basic shape and curvature of the lines but tended to merge

lines that were separate in MRMS.

Characterizing the spatiotemporal performance of the

technique is complicated by the natural variation of convective

morphology. In our training dataset, convection tends to be

more widespread in the eastern United States, while isolated

convective cells are more common in the west. Since RMSD

statistics are sensitive to the echo coverage fraction F, care

must be taken to separate true regional biases from artificial

biases that arise from natural regional variations in these

properties. Figure 7a shows the RMSD versus the echo cov-

erage fraction F, defined here by the 20-dBZ radar reflectivity

contour. It can be seen that more scattered precipitation with

smaller F can be more accurately estimated with smaller

RMSD. It also shows that eastern U.S. regions tend to have

both larger F and larger RMSD. However, the easternmost

locations do have errors greater than the average (black line

given by RMSD 5 2.2F0.36). Given that our training samples

have a fairly uniform distribution from east to west (Fig. 2a),

the fact that the predictions exhibit an ‘‘Oklahoma centric’’

bias is notable and may be a consequence of using a loss

function that is heavily weighted toward higher REFC values.

The typical life cycle is for convection to initiate with the

heating of the daytime, and then grow upscale overnight. One

might expect the large echo structures at night to validate

better since the GREMLIN estimates tend to be more

smoothed out than MRMS REFC. To look for biases in time,

Fig. 7b gives the RMSD versus F as a function of the solar

zenith angle, where sunset is 908. It does show a population of

samples that have both large F and small RMSD; however,
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most nighttime samples are below the average line, even at

smaller F. This good performance at night is notable given that

our training samples emphasize late afternoon and early

evening (Fig. 2b). It is possible this is a result of GLM having a

20% higher detection efficiency at night than during the day

(Marchand et al. 2019). Not all daytime retrievals have lower

skill, and the day/night distinction in skill is less clean than

the east/west distinction. However, since daytime retrievals

do have room for improvement, this argues that the solar

reflective bands, visible and cloud particle phase/size bands in

particular, should be used. Overall, GREMLIN performs well.

In particular, GREMLIN is able to accurately locate areas of

strong echoes, which have been difficult to capture with heri-

tage methods (e.g., Arkin and Meisner 1987).

b. Targeted architecture experiments

A key question raised by the results shown in section 3a is,

‘‘What is the network learning to produce such good skill?’’We

FIG. 6. Colorado 8 May 2017 case for (a),(c),(e) MRMS and (b),(d),(f) GREMLIN prediction. Statistics are

provided for RMSD, coefficient of determination (RSQ), maximum REFC value (MAX), critical success index at

35 dBZ (CSI35), probability of detection at 35 dBZ (POD35), and false-alarm rate at 35 dBZ (FAR35).
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use several different methods to answer this question, starting

with targeted architecture experiments. Namely, we modify

the GREMLIN architecture by removing specific capabilities.

Analyzing the performance of the resulting restricted NNs tells

us which capabilities of GREMLIN are most essential for its

success and sheds light on how they are used.

We begin by removing the capability of GREMLIN to uti-

lize information from radiance gradients and spatial context

used by the network—done by replacing all 33 3 filters by 13
1 filters. Second, we trained models while withholding sets of

channels. Figure 8 provides results for a representative vali-

dation sample. For simplicity, we focus on the impact of gra-

dients in channel 13, which is the most important channel

(section 3d), and of lightning information. The C13 TBs

(Fig. 8a) exhibit very sharp spatial gradients from clear areas

with TB . 275K to areas with radar echo with TB ; 220K. In

comparing with the spatial pattern of REFC (Fig. 8c) it can be

seen that cold TBs are generally a good predictor that a par-

ticular pixel has REFC . 15 dBZ, but there is a low spatial

correlation between the coldest TB , 215K and the higher

REFC values. 35 dBZ. These areas of strong echoes correlate

well with lightning (Fig. 8b), although the lightning is a bit

smoother than REFC and there are spatial displacements. The

latter may be due to a combination of residual parallax dis-

placement errors and the effects of vertical wind shear.

Figures 8d–i show the progression of results for six NN

models with increasing capabilities, from the most restricted

model (Fig. 8d) to the full model, GREMLIN (Fig. 8i). The 13
1 filter experiments are shown in the middle row (Figs. 8d–f),

which represents the performance that could be expected

from a traditional pixel-based retrieval. With C13 alone

(Fig. 8d), the areas of REFC . 15 dBZ are reasonably well

delineated, but it completely lacks any echoes . 35 dBZ.

Combining GLMwith C13 (Fig. 8e) shows huge improvements

in the representation of echoes. 35 dBZ, although the spatial

extent is a bit too large. Bringing in the other two channels

(C07 and C09) in Fig. 8f does help reduce the errors a bit. So,

without the use of spatial gradient information, lightning

information is critical to obtaining any skill for higher

REFC values.

Figures 8g–i show the results using 3 3 3 filters. Even with

C13 alone, the use of gradient information and spatial context

(Fig. 8g), produces marked improvements in skill, especially at

the high REFC end. When compared with the 1 3 1 experi-

ment (Fig. 8d) the probability of detection (POD) of 35-dBZ

reflectivity jumps from 0 to 0.24, and the false-alarm rate

(FAR) of 0.56 is slightly better than using all channels with no

spatial information (Fig. 8f). Adding lightning information

(Fig. 8h) more than doubles the POD and also reduces the

FAR. Adding the other channels (Fig. 8i) helps as well, pro-

ducing significant improvements in RMSD and R2, also re-

sulting in higher POD and lower FAR. We hypothesize that

results of this quality (Fig. 8i) are sufficiently good to produce a

positive impact on data assimilation.

The results for this example are consistent with those across

all validation samples (Fig. 9 and Table 3). Without the benefit

of spatial information and lightning (black and green lines in

Fig. 9a), the RMSD at high REFC is as large as 25 dBZ. Note

that removing spatial context but adding lightning (blue line

Fig. 9a) makes the RMSD slightly worse for REFC in the range

20–35 dBZ but produces large improvements above 35 dBZ,

bringing the RMSD down to 15 dBZ. Adding spatial context

yields additional large improvements (Fig. 9d). Combining

spatial information and lightning produces the best results,

with RMSD of 12 dBZ at the highest REFC. Without spatial

information, lightning shows obvious value in increasing the

POD (Fig. 9b) and reducing the FAR (Fig. 9c). In the absence

of lightning information, adding the water vapor channel

(green line in Figs. 9b,c) does provide some improvements in

POD and FAR, but not as much as lightning. Based on

FIG. 7. RMSD vs the percentage coverage of radar echoes . 20 dBZ where the color indicates the mean

(a) longitude and (b) solar zenith angle for each sample.
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examining predictions, it appears the network correlates

smaller differences between C13 and C09 with higher REFC.

However, those areas of small C132C09 difference tend to be

more spatially extensive than REFC, with the result being that

POD is improved, but FAR is slightly worse. This finding

demonstrates the unique benefits of lightning information to

pinpoint the areas of strong updrafts and high REFC. When

spatial information is used, the value of lightning is relatively

less, but it still makes significant improvements in POD

(Fig. 9e) and FAR (Fig. 9f). Further insights into how the

network is using lightning and spatial information together is

provided by use of attribution methods (section 3d).

GREMLIN predictions can be seen to have overly broad

convective cores (e.g., Fig. 8), or, when using a continuous

color scale, predictions look blurrier than real radar images.

This is an intrinsic aspect of CNNs related to the perception–

distortion trade-off (Blau and Michaeli 2018) for image-

generating methods, which is a trade-off between producing

images that look sharp but are less accurate (better perception)

versus images that look blurry but are more accurate (less

FIG. 8. Validation sample inputs for 2330 UTC 2 Jul 2019: (a) GOES C13 and (b) GOES GLM; truth: (c) MRMS; and prediction for

progression of six models with increasing capabilities: (d) 13 1 filters for C13 only, (e) 13 1 filters for C131GLM, (f) 13 1 filters for all

channels, (g) 33 3 filters for C13 only, (h) 33 3 filters for C131GLM, and (i) 33 3 filters for all channels (GREMLIN). Panels (d)–(i)

provide the following statistics: RMSD (dBZ), RSQ, MAX (dBZ), CSI35, POD35, and FAR35.
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distortion). CNNs specialize in maximizing accuracy, for ex-

ample, minimizing the mean-squared error, but results are

blurry. CNN outputs are somewhat analogous to an ensemble

mean field—it might be the best answer in a statistical sense,

but it may not look physically realistic. In contrast, a different

type of neural networks, generative adversarial networks

(GANs), can produce results that are less statistically accurate,

but could more closely resemble actual radar fields. GAN

outputs are somewhat analogous to producing a single en-

semble member. Stengel et al. (2020) apply GANs applied to a

wind and solar data superresolution application and discuss the

trade-off in detail. In summary, increased uncertainty results in

increased blurriness in CNN-generated images, while resulting

in a larger potential spread between different GAN-generated

images. Our interpretation of the broad convective cores

generated by our CNN are thus that they are a result of

uncertainty yielding blurry outputs, as outlined above.

Specifically, our hypothesis is that the overly broad cores

provide an indication of positional uncertainty translating

cloud-top features into features deep inside the cloud. In our

future work we plan to try out GANs and compare results

with CNNs in terms of accuracy versus blurriness.

c. Examining the effective receptive field

GREMLIN is a purely convolutional neural network, that is,

it does not have any fully connected (aka dense) layers. This

means that any individual output neuron, that is, any pixel of

the estimatedMRMS image, is connected to only a small group

of input neurons corresponding to a small spatial neighbor-

hood of the output pixel in the input channels. This small area

is known as a CNN’s receptive field (Luo et al. 2016). For our

application, the receptive field tells us the maximal spatial

context size and thus the maximal size of a meteorological

feature that can be recognized and utilized by GREMLIN to

determine the value of a single pixel of the estimated

MRMS image.

One can calculate the maximal extent of the receptive field,

aka the theoretical receptive field (TRF), from the CNN ar-

chitecture using a closed-form expression that depends on the

filter sizes and strides for each layer (Araujo et al. 2019).

Results for GREMLIN’s TRF are provided in Ebert-Uphoff

FIG. 9. Statistics for (top) 1 3 1 filters and (bottom) 3 3 3 filters for (a),(d) RMSD; (b),(e) POD; and (c),(f) FAR vs REFC for various

experiments (line colors).

TABLE 3. Categorical performance statistics for GREMLIN: POD,

FAR, CSI, and categorical bias for various REFC thresholds.

REFC (dBZ) POD FAR CSI Bias

5 0.92 0.23 0.72 1.19

10 0.85 0.18 0.72 1.04

15 0.80 0.22 0.65 1.03

20 0.71 0.31 0.54 1.03

25 0.63 0.40 0.45 1.05

30 0.55 0.46 0.38 1.01

35 0.51 0.57 0.33 1.06

40 0.52 0.57 0.31 1.23

45 0.43 0.65 0.24 1.24

50 0.37 0.77 0.14 1.17

14 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 60

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/22/21 08:13 PM UTC



and Hilburn (2020). However, pixels at the center of the re-

ceptive field have the largest impact, with impact decreasing

rapidly for pixels further away in a roughly Gaussian distri-

bution (Luo et al. 2016). Here we take the approach to sample

the actual distribution of the receptive field, the effective re-

ceptive field (ERF; Luo et al. 2016), to understand which size

neighborhood truly has a significant impact. The ERF, which

depends on the network’s weights, changes during training.

Thus, it cannot be calculated from architecture alone. Here, we

develop an ERF approximation based on the SmoothGrad

algorithm (Smilkov et al. 2017). The approximation is de-

scribed in detail in appendix A. The similarities between the

receptive field and the radius of influence in DA applications

suggests that the receptive field size—either the TRF or

ERF—could potentially be used as an indication for choosing

the radius of influence.

Figure 10 shows our approximation of ERF for GREMLIN

for different lengths of training, ranging from an untrained

model with random weights (Fig. 10a) to the final model

trained for 100 epochs (Fig. 10d). Each ERF image in Fig. 10

shows the cumulative results across all four channels. Note that

the ERF consistently occupies a region of less than 53 3 53

pixels or 159 km 3 159 km (red squares in Fig. 10) with the

region of highest impact actually much smaller than that, es-

pecially in the trained models. The ERF of the untrained

model is the most spread out (Fig. 10a). Early training

(Figs. 10b,c) seems to make the model put more emphasis to-

ward the center, potentially as a sort of first-order approxi-

mation. The final model retains some focus in the center, but

also spreads out more—potentially moving beyond the first-

order approximation and taking additional detail into account.

While the results in Fig. 10 are only ERF approximations

(details in appendix A), and vary across considered samples,

output pixels, and random seeds used to train the CNN, we

conducted many more experiments and found the trends in

Fig. 10 to be representative of the overall behavior of the ERF

distributions. Please see the detailed comments in appendix A

on the interpretation of such ERF approximations.

d. Applying attribution methods to identify NN strategies

To learnmore about the underlying logic GREMLIN uses to

derive its estimates, we use the method of LRP. Given an input

sample and an output pixel, LRP reveals where the neural

network was primarily looking when deriving the output

pixel’s estimate. We find that LRP is better suited for this

purpose than standard gradient-based methods because LRP

takes a global view of this decision-making process, rather than

just taking a local derivative as gradient-based methods do.

Details of LRP are provided in appendix B.

Figure 11 shows LRP results for GREMLIN for the same

sample as in Fig. 10, but in this case focusing on a different

output pixel, chosen for its close proximity to strong lightning

activity. All panels in Fig. 11 are zoomed into a neighborhood

of the chosen output pixel. The first row shows the input

channels and corresponding desired output (i.e., the MRMS

observations). Because we suspected that the neural network

was heavily reliant upon the gradient of the input channels,

we show an approximation of the input channel gradient

magnitudes in the second row. These gradient magnitudes

were calculated by applying a Sobel operator (Gonzalez and

Woods 2002) to the input channels. The gradient estimates

are not fed into the neural network; they are provided here

simply to highlight the locations of the strongest gradients.

The third row of Fig. 11 shows the first set of results, namely,

the LRP maps of where in the input channels the neural

network pays attention in order to estimate the value of the

chosen output pixel for this sample, along with the estimated

MRMS results.

FIG. 10. ERF approximation for four different models with identical architecture (architecture of GREMLIN), but different lengths of

training, ranging from (a) no training to (d) fully trained model, GREMLIN. For each image we show the ERF in the original 2563 256

pixel (768 3 768 km) space of the input channels and a zoom-in of a 53 3 53 pixel (159 km 3 159 km) region (red box). Results are for

sample 68 and output pixel (125, 125). (Note that the four models did not start out with the same random seed and thus cannot strictly be

seen as a progression of training toward the final model, but rather should be seen as independently trained models with different training

lengths.)
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The LRP result for the GLM channel shows that the NN

focused only on regions where lightning was present in that

channel. The LRP results for the other channels show that even

in those channels the NN’s attention was drawn to focus on

regions where lightning was present. We then performed a new

experiment by modifying the input sample to have all lightning

removed, that is, the GLM channel was set to all zero values.

For this case LRP showed us that the network’s focus shifted

entirely to the first three input channels, that is, the ABI

channels, as expected. More importantly, the focus shifted to

two types of locations, namely, areas where the ABI input

channels either have (i) a large gradient or (ii) high brightness

(cold temperatures), as can be seen by comparing the three

leftmost panels of the first, second, and fourth row. In fact, near

the center of the fourth-row panels, it can be seen that the LRP

patterns of the three ABI channels represent the union of the

strongest gradient lines in the second row and the locations of

strongest brightness in the first row. LRP vanishes further away

from the center location, as expected given the nature of the

ERF properties.

These results indicate the following strategy used by

GREMLIN: whenever lightning is present near the output

pixel, the NN primarily focuses on the values of input pixels

where lightning is present, not only in the GLM channel, but in

all four input channels. It seems that the network has learned

that locations containing lightning are good indicators of

FIG. 11. LRP results for GREMLIN for sample 68 and output pixel (227, 41). (top) The four input channels (left to right: ABI C07, ABI

C09, ABI C13, GLM groups) and the corresponding MRMS image (true values). (top middle) The gradient of the input channels cal-

culated by applying a Sobel operator. (bottom middle) LRP results for the original four input channels and the chosen output pixel, and

the MRMS estimate. (bottom) The equivalent of the bottom-middle row, but after all values of the GLM channel were set to zero. Note

that all images are zoomed in to a region centered at the pixel of interest.
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MRMS behavior, even in the other input channels. In the ab-

sence of any lightning, the NN focuses on (i) locations where

the gradient is strong (primarily cloud boundaries) or (ii) lo-

cations of very cold cloud tops. It seems to have learned that

those locations have the highest predictive power for estimat-

ing the output. Additional experiments confirmed these three

strategies (lightning, cloud boundaries, cold cloud tops) of the

final neural network for a wide selection of samples and

output pixels.

e. Synthetic inputs to quantify sensitivity to radiance
gradients

The use of architecture experiments (section 3b) and attri-

bution methods (section 3d) have demonstrated the impor-

tance of radiance gradients for retrieving high REFC values. In

this section, we construct synthetic inputs and probe the net-

work’s response to quantify that sensitivity. For this purpose,

we enlist a sum of generalized elliptical Gaussians (GEG)

model. This model assumes an outer Gaussian Go that repre-

sents the thunderstorm anvil, and an inner Gaussian Gi that

represents the overshooting top. The synthetic brightness

temperature T is a function of (x, y) with the following pa-

rameters: location x0 and y0, amplitude A, size S, aspect a,

orientation u, and sharpness (exponent) p for the outer and

inner Gaussians, denoted with subscripts o and i:
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Evaluating thousands of different parameter settings, the

spatial patterns that most strongly activates the network, based

on the maximum REFC, all resemble Fig. 12a. What the

strongly activating patterns have in common, and what is dif-

ferent from the weakly activating patterns, are very large po
and large pi, meaning that the anvil and overshooting top have

very sharp TB gradients. We evaluated po and pi ranging from

0.1 to 10. The other traits that the strongly activating patterns

have in common are thatGi is located near the edge ofGo and

that Si� So.We evaluated Si ranging from 0 to So. The patterns

producing a weak response tend to look unphysical from a

meteorological perspective, indicating that the network has

learned about realistic-looking overshooting-top signatures.

This is a desirable property: rather than responding strongly to

unphysical outlier inputs, it only responds strongly to patterns

that look meteorological, although that does not rule out the

possibility that the network could be fooled by a cleverly

constructed counterexample. We explored outer sizes from 1

to 128 pixels, outer and inner aspects from 0.1 to 10, and outer

and inner orientations 08–3608. Of all the parameters of the

GEG model, the ones that are most influential in producing

high REFC values are po and pi, and Fig. 12b characterizes the

maximum REFC as a function of those parameters. The

emergence of 35-dBZ echoes requires po to be 1 or greater or pi
to be 3 or greater. Thus, the CNN does not just respond to

gradients, but calibrates its response based on the sharpness of

the brightness temperature gradient. Related to these idealized

synthetic input experiments, future work will consider using

observation system simulation experiments to quantify errors

associated with transferring from satellite observations to la-

tent heat profiles.

4. Summary and future work

In this paper, we report on the training and evaluation of a

CNN that uses ABI infrared channels and GLM lightning data

to estimate MRMS REFC over eastern CONUS during the

warm season. Since REFC follows an exponentially decreasing

distribution, to get good performance at high values, we used a

weighted loss function. This paper demonstrated that the net-

work is learning physically meaningful strategies to predict

radar reflectivity from satellite radiances and lightning. A va-

riety of approaches were examined to investigate what the

network learned and how it makes its predictions. Channel-

withholding experiments showed that geostationary lightning

observations are uniquely valuable for their ability to pinpoint

locations of strong updrafts. Experiments that withhold spatial

information demonstrated that radiance gradients carry more

information about high REFC values than the radiance values

themselves. Layerwise relevance propagation established that

the CNN uses the information from ABI and GLM in a syn-

ergistic manner, where it interprets ABI radiance gradients in

the context of whether GLM indicates the presence of light-

ning. Synthetic input experiments confirmed that the sharper

the gradient, the stronger the CNN response, at least for pat-

terns that have an appearance reminiscent of meteorological

convection.

Having established that the horizontal spatial patterns of

radar reflectivity can be accurately estimated using GOES

data, the next step in this research is to produce full 3D profiles

of radar reflectivity for use as an input to data assimilation

systems. Here, we may leverage ongoing research to estimate

cloud geometric thickness (Noh et al. 2017) and vertical

structure (Miller et al. 2014) via empirically based methods.

The current nonvariational technique for initializing RAP/

HRRR with radar reflectivity does not require characteriza-

tion of uncertainty; however, uncertainty information is re-

quired for variational approaches. Future work includes

training and validation with a much larger dataset that includes

samples from all times of year and using a three-way training–

validation–testing split. We will also seek to provide a measure

of confidence or uncertainty for use in data assimilation pro-

cedures. We also plan to try out GANs and compare results

with CNNs in terms of accuracy versus blurriness. We em-

phasize this paper is exploratory research and the current

GREMLIN, version 1, model is not suitable for estimating

radar reflectivity for conditions outside of warm-season con-

vection over CONUS.

Over CONUS the results are easy to validate using retro-

spective simulation experiments in which the actual radar data

are withheld and replaced by the GREMLIN estimates.
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However, the real value of the technique will come from its

ability to fill in locations that lack radar coverage because of

terrain blockage, which are mostly over the western United

States and coastal/oceanic locations. Evaluating results in

these locations is much more difficult because of a lack of

observations. However, MRMS sectors over the Caribbean

Sea (GOES-16), Hawaii (GOES-17), and Guam (Himawari-8)

do provide observations, as do spaceborne radar reflectivity

observations from the Global Precipitation Measurement

(GPM)Dual-Frequency PrecipitationRadar (DPR). Howwell

themodel derived in this paper will generalize tometeorological

regimes outside of the training set is an open question.However,

it is known that both lightning and storm characteristics are

different over land versus ocean (Nag and Cummins 2017; Bang

and Zipser 2015). Thus, additional contextual information

that is geographic or meteorological in nature may be needed,

along with a deeper network to accurately depict features at

the upper end of mesoalpha to synoptic scales.
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APPENDIX A

Method for Approximating the ERF

To get an estimate of the ERF, we want to calculate and

visualize how much each location in the input channels

affects a specific output pixel in a considered neural net-

work. A simple way to do so for a given input sample and

chosen output pixel is to calculate the gradient of the output

neuron with respect to the neurons in the input channels.

Calculating this gradient is a common task in neural net-

works and built-in routines are readily available in neural

network computing environments. However, the results

tend to be noisy, and we thus use a modification of this

approach, namely, the SmoothGrad algorithm by Smilkov

et al. (2017). SmoothGrad calculates the gradient with re-

spect to the input neurons several times, each time adding

Gaussian noise to each pixel of each input channel before

calculating the gradient, and then returns the average re-

sult. This approach, as the title of Smilkov et al. (2017) aptly

states, removes noise (in the results) by adding noise (in

the input channels).

We use the SmoothGrad implementation of the ‘‘tf-explain’’

package (see https://tf-explain.readthedocs.io/en/latest/) with

100 samples and a noise level of 1.0. Note that this noise level is

chosen to be extremely large on purpose (keep inmind that our

inputs are scaled to values between just 0 and 1), because that

makes the results less dependent on the specific sample that

was chosen for the estimation. When interpreting the resulting

ERF estimates for a neural network model one should keep in

mind that the results vary on the basis of i) chosen input

FIG. 12. (a) Synthetic C13 TB that produces the maximum REFC response for GREMLIN. This corresponds to

parameters xo 5 128, yo 5 128, Ao 5 0.5, So 5 30, ao 5 1.2, uo 5 1708, po 5 10, xi 5 xo 1 dxi cos(fi), yi 5 yo 1
dyi sin(fi), Ai 5 0.5, Si 5 riSo, ai 5 1, ui 5 08, pi 5 10, dxi 5 15, dyi 5 15, fi 5 1358, and ri 5 0.25. (b) Maximum

REFC as a function of inner Gaussian power (x axis) and outer Gaussian power (line color).
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sample, ii) chosen output pixel, and iii) random noise gener-

ated by SmoothGrad. Thus, it is important to generate esti-

mates for variations of all these parameters and ensure that

results are representative of the general trends. A property we

noticed varying across those parameters is the presence of a

few high-intensity pixels in the resulting maps. Their number

and location can vary and thus should not be assigned special

meaning. Aside from such details the overall distribution is

fairly consistent, namely, how diffuse the ERF is and how far it

stretches out from the center. More generally, results from this

ERF approximationmethod should be seen as a random sample

drawn from a given distribution, rather than each pixel value

being given specific meaning.

APPENDIX B

LRP

Akey idea of layerwise relevance propagation is that it seeks

to track relevance backward from an output neuron to the input

image, by tracking backward which neurons in the prior layer

were most responsible for the values of a neuron in the later

layer. To do so LRP does not use any of the built-in back-

propagation rules of neural networks and develops instead its

own set of customized rules. By applying those rules iteratively,

an overall estimate of relevance in the input space is obtained.

LRP is a fairly complex topic and the details are beyond the

scope of this paper. For a detailed introduction see Bach et al.

(2015), Montavon et al. (2018), or Toms et al. (2019).

We are using the implementation of LRP in the ‘‘innvestigate’’

package for Tensorflow (see https://innvestigate.readthedocs.io/

en/latest/). We are using the alpha–beta rule [Eq. (60) in Bach

et al. (2015)] with alpha 5 1 and beta 5 0, to only approximate

positive attribution, that is, to identify locations for which higher

activation values tend to make high values at the output more

likely. We had to use a few tricks to make this implementation

work for our purpose. First, we flattened the output layer of the

NN into a vector to be able to prescribe at which output pixel we

want to look. Second, we did not use the standard heat-map vi-

sualization provided by the package but instead split the heat-

map result for LRP into its separate channels and plotted them

separately. For the interpretation of LRP results one needs to keep

in mind that LRP uses approximation rules and that it was spe-

cifically designed for classification tasks, and not regression tasks,

and therefore results should always be interpreted as showing

overall trends but should not be interpreted on a pixel-by-

pixel level.
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